许多生物液体燃料政策基于“碳中性(Carbon Neutral)”的物理假设,将温室气体减排设定为政策目标之一。所谓碳中性,即指从理论上来讲,生物液体燃料燃烧所排放的二氧化碳与能源作物生长过程中从大气中固定的二氧化碳之间实现了碳平衡。但在实际生产过程中,无论是能源作物的种植过程,还是生物液体燃料的生产加工过程,均需要投入大量的化石能源,生物液体燃料的碳中性问题受到了的质疑。近的研究成果也显示,生物液体燃料温室气体排放受能源作物物种、加工工艺、转化效率等多种因素影响,结果差异很大。
研究认为,尽管效益各不相同,但生物液体燃料均能在一定程度上减少温室气体的排放。其中,巴西以甘蔗为原料生产燃料乙醇的温室气体减排效益好,相比化石能源其温室气体排放可以减少70%~90%;而以木质纤维素为原料的第二代生物燃料加工技术是值得期待的新技术,一旦突破技术瓶颈,其应用前景极为广阔;;欧盟以甜菜与油菜籽为原料生产生物柴油的温室气体减排效益在40%~60%之间;;美国以玉米为原料生产燃料乙醇的温室气体减排效益只有10%左右。
为了抑制土地用途的快速转变,对能源作物种植的土地潜力研究正在积极开展,有学者研究了麻风树、甘薯等能源作物种植的土地潜力。在过去50a中,农作物产量的大部分增量(约80%)来自单产提高,其余来自扩大种植面积和提高复种指数。
世界范围内除去森林、保护区及用于满足不断增长的粮食和畜牧业需求所需土地之外,可以用于扩大种植面积的土地估计约在2.5×108~8×108hm2之间,其中大部分位于拉丁美洲热带地区或非洲。从近期看,可以通过扩大原料作物种植面积来满足对生物燃料的需求;而就中长期而言,开发优良作物品种、转变农作方式和发明新技术(例如纤维素转化)则可能发挥决定性作用。
单产大幅提高及技术进步是实现生物燃料作物可持续生产的关键,从而能够大限度地抑制农田、林地、草场等向非农田土地的快速转变。